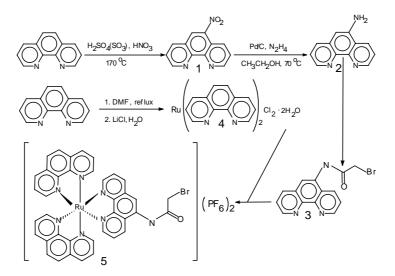
# Synthesis and Properties of Ru(phen)<sub>2</sub>(phen-NHCOCH<sub>2</sub>Br)(PF<sub>6</sub>)<sub>2</sub>

## Peng WANG, Yi YUAN, Guo Yi ZHU\*


### Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

**Abstract:** A new active material for ECL sensor,  $Ru(phen)_2(phen-NHCH_2Br)(PF_6)_2$ , has been designed and synthesized. Its structure was confirmed by means of IR, MS and <sup>1</sup>H NMR. Also, some of its properties such as electrochemistry, fluorescence and ECL are reported.

Keywords: Ru(phen)<sub>2</sub>(phen-NHCH<sub>2</sub>Br)(PF<sub>6</sub>)<sub>2</sub>, electrochemistry, fluorescence, ECL.

Recently, an electrochemiluminescent (ECL) Pt electrode coated with a  $\text{Ru}(\text{bpy})_3^{2+}$  derivative modified chitosan/silica gel membrane developed by Zhao *et al*<sup>1</sup>. has been successfully applied in selective detection of oxalic acid. Yang *et al*.<sup>2</sup> have discovered that ECL efficiency of  $\text{Ru}(\text{phen})_3^{2+}$  is much higher than that of  $\text{Ru}(\text{bpy})_3^{2+}$ . Thus, we designed and synthesized a new active material for ECL sensor,  $\text{Ru}(\text{phen})_2(\text{phen-NHCH}_2\text{Br})(\text{PF}_6)_2$ , and the synthetic route is shown in **Figure 1**.

Figure 1. Scheme for synthetic route of Ru(phen)<sub>2</sub>(phen-NHCH<sub>2</sub>Br)(PF<sub>6</sub>)<sub>2</sub>.



Peng WANG et al.

Compounds 1, 2 (phen') and 4 were synthesized by the methods of Smith *et al*<sup>3</sup>., Lecomte *et al*<sup>4</sup>. and Cook *et al*<sup>5</sup>., respectively. Compound 3 was synthesized by the reaction of 2, sodium bicarbonate and 2-bromo-acetyl bromide in MeCN. The title compound 5 was obtained from 3 and 4 by refluxing in water-methanol solution.

The orange title compound was confirmed by IR, ESI-MS and <sup>1</sup>H NMR. IR ( $\nu/cm^{-1}$ ): 3390 (N-H), 1698 (C=O). ESMS (m/z): 922 ([M-PF<sub>6</sub>]<sup>+</sup>). <sup>1</sup>H NMR (DMSO,  $\delta_{\rm H}$ ): 10.98 (s, 1H, N-H), 8.93 (m, 6H, 4-H and 7-H of phen and phen'), 8.76 (s, 1H, 6-H of phen'), 8.51 (s, 4H, 5-H and 6-H of phen), 8.17 (m, 6H, 2-H and 9-H of phen and phen'), 7.88 (m, 6H, 3-H and 8-H of phen and phen'), 4.67 (s, 2H, CH<sub>2</sub>).





**Figure 2** shows a typical cyclic voltammogram of  $10^{-4}$  mol/L compound **5** in MeCN/0.1 mol/L (TBA)ClO<sub>4</sub> at a scan rate of 100 mV/s. The fluorescence spectrum of a saturated aqueous solution of **5** at 25 °C is shown in **Figure 3**.

ECL experiments were carried out on self-made ECL instrument with a working electrode of gold with a surface area of  $2 \text{ cm}^2$  in aqueous solutions of 0.001 mol/L tri-*n*-propylamine and variable concentrations ( $10^{-3}$ ,  $10^{-4}$ ,  $10^{-5}$  and  $10^{-6}$  mol/L) of **5**, and the corresponding relative ECL intensities are 3123, 311, 31.4 and 3.13 units at pH 7.5, respectively.

### Acknowledgments

This work is supported by the State Commsission of Science and Technology of China.

#### References

- 1. C. Z. Zhao, N. Egashira, Y. Kurauchi, K. Ohga. Anal. Sci., 1997, 13(suppl), 333.
- 2. H. J. Yang, S. R. Gudibande. PCT WO 96/35697, 1996, 20.
- 3. G. F. Smith, F. W. C. Jr. J. Org. Chem., 1947, 12, 781.
- 4. J. P. Lecomte, A. K. D. Mesmaeker. J. Chem. Soc. Farady Trans., 1993, 89(17), 3261.
- 5. M. G.Cook, A. P. Lewis, G. S. G. McAuliffe. J. Chem. Soc. Perkin Trans. II, 1984, 1293.

Received 30 November 1998 Revised 15 March 1999